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Abstract—A device-level simulation is presented for studying
wave propagation along metal–insulator–semiconductor intercon-
nects. A set of nonlinear equations is first formulated by combining
the motion equations of charged carriers and Maxwell’s equa-
tions. The set of nonlinear equations is then transformed into
the frequency domain, which leads to sets of nonlinear equations
for the fundamental mode and its harmonics. Finally, the sets of
nonlinear equations in the frequency domain are discretized using
the finite-element method and solved using Newton’s iterations.
Special numerical enhancements are implemented to speed up the
computational convergence and handle the boundary layer nature
of the problem under study. This device-level simulation provides
knowledge on field–carrier interactions, semiconductor substrate
loss, and nonlinearity, as well as slow-wave and screening effects
of charged carriers. This device-level simulation scheme enables
a rigorous full-wave study of nonlinearity effects that arise from
semiconductor substrates. Numerical examples for some practical
material and geometrical parameters are included to illustrate
capabilities and efficiency of the proposed device-level simulation
scheme.

Index Terms—Boundary layer problem, device-level simulation,
electromagnetic analysis, field–carrier interactions, finite-element
method, MIS interconnects, semiconductor nonlinearity and loss,
slow-wave effect.

I. INTRODUCTION

E FFECTS of on-chip interconnects are becoming a limiting
factor to the overall performance of circuits due to denser

and larger chips and higher clock rates. Today, the on-chip
wiring delays become much more significant portions of the
total chip delays than in the past. Interconnect effects such
as losses, dispersion, and substrate noise may degrade the
performance of circuits. Metal–insulator–semiconductor (MIS)
interconnects, being one of the most elementary components
in the modern integrated circuits, have been of fundamental
interest. Slow-wave propagation in MIS and Schottky-contact
interconnects has been both experimentally observed and the-
oretically explained from different points-of-view [1]–[5]. The
slow-wave properties of such interconnects can be employed to
reduce the size and cost of distributed elements to implement
delay lines, variable phase shifters, voltage-tunable filters, etc.
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On the other hand, the energy dissipation in both the semicon-
ductor layer and conductor line may have significant impact on
the performance of MIS interconnects. Moreover, the nonlinear
nature of semiconductor substrates of on-chip interconnects
has been systematically ignored by most previous research.
The question when the nonlinearity of on-chip interconnects
can be safely neglected is, however, not answered adequately
and quantitatively. In order to understand mechanisms behind
various effects such as substrate noise, semiconductor nonlin-
earity and loss, conductor loss, slow-wave effect, or dispersion
it is necessary to accurately simulate the MIS interconnect
structures.

Analytical or empirical lumped-circuit models [6], [7] were
used to provide fast calculation and firsthand insight to the per-
formance of MIS interconnects. However, they are applicable to
a few simplified configurations only and provide very limited
information about the distributed nature of MIS interconnects.
Nevertheless, the lumped-circuit models can be employed to ini-
tialize more powerful numerical algorithms.

More accurate analysis of MIS interconnects requires the so-
lution of the electromagnetic-field problem. Numerical schemes
for electromagnetic simulation of MIS interconnects include
the mode-matching method [8], [9], the spectral-domain anal-
ysis (SDA) method [10]–[12], the method of lines [13], the
transmission-line matrix (TLM) method [14], the finite-differ-
ence time-domain (FDTD) method [15], and the finite-element
method [16], [17]. In these purely electromagnetic simulation
models, the semiconductor effects are accounted in the simu-
lation simply by virtue of a uniform conductivity or complex
dielectric constant within the semiconductor material.

When an electromagnetic wave propagates along an MIS in-
terconnect, the screening effect of charged carriers in the semi-
conductor prohibits the electromagnetic field from penetrating
deep into the semiconductor, in addition to the attenuation ef-
fect arising from energy dissipation. In order to describe the be-
havior of semiconductor as solid-state plasma, the motion equa-
tions of charged carriers should be included in the simulation
[18]. In other words, a formula combining the motion equa-
tions of carriers and Maxwell’s equations is required in the de-
vice-level simulation in order to include the interaction mecha-
nism between the electromagnetic field and charged carriers in
semiconductor.

In [19], the propagation property of the fundamental mode
in a biased parallel-plate MIS waveguide was investigated
using a transport-based analysis. A formulation incorporating
Maxwell’s equations and the motion equations of carriers
was first linearized and then solved using the finite-difference
scheme. The approach in [19] enabled the investigation of
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carrier accumulation and depletion under the influence of an
external dc bias, as well as the screening effect of carriers. The
approach in [19] is, however, applicable only to small-signal
analysis due to its linearization of the equations.

In this paper, a device-level simulation based on Maxwell’s
equations and the motion equations of carriers is presented to
study the propagation characteristics of MIS interconnects. The
nonlinearity in the motion equations of carriers is preserved
and included in the simulation. Thus, this approach is suitable
for both small- and large-signal analyses. In order to provide a
fast and robust simulation, advanced numerical algorithms such
as finite-element discretization, sparse matrix scheme, matrix
balancing, and multidimensional Newton’s iterations have been
utilized. Unlike the iterative algorithm in [19], where the equa-
tions are sequentially and separately solved at each iteration,
this approach solves all the equations simultaneously, which
reduces the number of iterations considerably. In addition, the
boundary layer nature of the set of equations under study will be
manifested theoretically and treated in a numerically consistent
manner. This approach is able to provide detailed insight con-
cerning field–carrier interactions, semiconductor substrate loss
and nonlinearity, slow-wave effect, screening effects of carriers,
and external bias effects.

II. BASIC FORMULATION

In this section, the formula in the time domain for analyzing
MIS interconnect structures is established and is then trans-
formed into the frequency domain.

A. Time-Domain Formulation

In a homogeneous medium, Maxwell’s equations are given
by

(1a)

(1b)

(1c)

(1d)

where and are, respectively, the electric and magnetic
fields, is the conduction current density,is the (net) electric
charge density, and and are, respectively, the permittivity
and permeability of the medium.

Equation (1d) can be viewed as a direct consequence of (1a),
whereas (1b) and (1c) imply the current continuity

(2)

Therefore, the set of independent equations from Maxwell’s
equations consists of (1a), (1b), and (2).

In dielectric materials, the electric charge densityis always
zero. On the other hand, in a semiconductor medium, the electric
charge density is given as

(3)

where and are, respectively, the hole and electron densities,
is the net doping distribution that is, respectively, positive or

negative for the relative excess of donors or acceptors, andis
the elementary charge.

In a semiconductor medium, the motion of carriers is gov-
erned by the following equations:

(4a)

(4b)

where and are, respectively, the electron and hole current
densities, and are, respectively, effective carrier mobil-
ities of electrons and holes, and are, respectively, dif-
fusion coefficients for electrons and holes, andand are,
respectively, average collision times of electrons and holes.

Note that the total conduction current density is the sum of
the electron and hole current densities

(4c)

The current continuity (2) is usually written into two equations
in terms of and as follows:

(5a)

(5b)

where is the total net recombination rate of electrons and
holes.

In summary, the complete set of equations in the time domain
consists of (1a), (1b), (4a), (4b), (5a) and (5b). This set of equa-
tions along with the properly devised boundary conditions can
completely characterize the property of MIS structures.

B. Frequency-Domain Formulation

The nonlinear terms and in the time-domain
formulation introduce signal distortion, which consists of
various harmonics in the frequency domain. For a guided
wave propagating along the-direction, the fundamental
component of an arbitrary variable takes the form

, where denotes the fundamental (an-
gular) frequency and represents the propagation factor.
Therefore, the product of two fundamental mode quantities

and will result in a
second harmonic quantity ,
and so on. In general, an th harmonic quantity

can be gen-
erated from the product of an th harmonic quantity

and an th harmonic quantity
.

The above procedure can be rigorously formulated by
virtue of Fourier analysis. A guided nonlinear wave ,
propagating along the-direction, takes the generalized form
as follows:

(6a)
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where denotes the propagation velocity that is a function of the
fundamental frequency. Moreover, is a periodic function
with respect to and the period is equal to . Hence, (6a)
can be mathematically expanded in terms of Fourier series as
follows:

(6b)

where denotes the steady-state solution, i.e., the
static component, is the fundamental mode, and

represents the th harmonic component
of the variable under consideration. In a linearized problem, all
the higher order harmonics vanish and only the fundamental
mode is considered. Thus, the nonlinear wave reduces to a
monotonic wave. For a general nonlinear problem, however,
all the higher order harmonics can be nonzero and should be
included in the analysis.

The harmonics in the expansion (6b) should not be confused
with the nonlinear wave itself at multiples of the fundamental
frequency. The nonlinear wave could exist for the entire fre-
quency range, whereas the harmonics occur only at multiples
of the fundamental frequency. Moreover, the harmonics cannot
exist without the presence of the fundamental mode as the ex-
citation source, that is, the harmonics cannot stand alone by
themselves. On the other hand, the nonlinear wave can exist
in its own right. The propagation factor that characterizes
the propagation property of the nonlinear wave is generally a
nonlinear function of the frequency. Therefore, the propagation
factor of the nonlinear wave at is usu-
ally unequal to and irrelevant to the dependence factor

of the th harmonic in the expansion (6b).
Substitution of the form (6b) into the time-domain formula-

tion leads to

(7a)

(7b)

(8a)

(8b)

(9a)

(9b)

and

(10)

where is the wavenumber in the medium,
, and

. During the derivation of (7a) and
(7b), the magnetic field has been eliminated from (1a) and (1b),
and the divergence equation is exploited as follows:

(11)

Theoretically, (7a) and (7b) are the equations needed for de-
termining the electrical field components. However, numerical
analysis of (7a) and (7b) may lead to spurious solutions [20],
which do not satisfy the divergence condition (11). In a numer-
ical analysis such as finite-element analysis, the basis functions
for expanding the unknowns are merely required to be contin-
uous, but not differentiable. Hence, a numerical solution satis-
fies the governing differential equations only in a weak sense.
Due to the lack of sufficient differentiability, the implication of
(11) by (7a) and (7b) no longer holds. As a consequence, a weak
solution of (7a) and (7b) may not meet the divergence condi-
tion (11). To prevent spurious solutions, it is a common practice
to incorporate the divergence condition (11) into the basic (7b)
during the course of numerical analysis.

The complete formula in the frequency domain consists of
(7a)–(10). Careful examination on these equations reveals that
any given harmonic depends on the lower order harmonics only.
Therefore, the harmonics can be recursively obtained from a
lower order harmonic to a higher order harmonic, starting from
the static solution. The solution to the static equations can be
readily attained using the standard approach, in which a scalar
potential is introduced through and solved along
with the static carrier concentrations and .

III. A NALYSIS OF MIS WAVEGUIDE STRUCTURES

The configuration of an MIS waveguide structure is shown in
Fig. 1. In this section, the general frequency domain formula ob-
tained in Section II is applied to MIS waveguide structures, and
then boundary conditions are devised for the frequency-domain
equations. Based on the frequency-domain formula, a finite-el-
ement analysis can be developed. Some special considerations
to enhance the finite-element solution are addressed.

A. Basic Equations for MIS Waveguide Structures

A parallel-plate waveguide structure extends from
to . Hence, all the physical quantities are uniformly dis-
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Fig. 1. Configuration of an MIS waveguide structure.

tributed along the -direction, i.e., they are independent of the
coordinate. Moreover, the dominant mode in a parallel-plate

waveguide is a TM mode. For TM modes, the magnetic field has
only a component and, thus, the electric field has nocom-
ponent, as implied by (10). Hence, (7a)–(10) lead to

(12a)

(12b)

(12c)

and

(12d)

(12e)

where

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

Equation (12d) is obtained by incorporating (11) into (7b),
which is able to prevent spurious modes in the numerical
solution.

B. Boundary Conditions

By accounting for the boundary condition
on the metal surface, the field components in the dielectric layer
can be obtained as follows:

(14a)

(14b)

(14c)

where and are, respectively, the permittivity and perme-
ability of the dielectric layer, and . Note
that is an arbitrary constant depending on the excitation
magnitude, while is to be determined.

The boundary conditions on the interface between the insu-
lator and semiconductor are as follows:

(15a)

(15b)

(15c)

The ground plane at is usually far away from the
signal line, i.e., the value of is generally much larger than the
Debye length. Hence, the ground plane may have little impact
on the propagation characteristics. The boundary conditions on
the ground plane are prescribed as

(15d)

(15e)

For the fundamental mode, eliminating the arbitrary constant
in (15a) and (15b) leads to

(16)

Equation (16) provides a nonlinear algebraic equation for de-
termining the propagation factor. Given an excitation magni-
tude , (12a)–(12e) and (16) along with boundary conditions
(15a) and (15c)–(15e) completely determine the field compo-
nents, carrier concentrations, and propagation factor for the fun-
damental mode. Note that the boundary condition (15b) is auto-
matically fulfilled provided that (15a) and (16) are imposed.
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For a high-order harmonic with , (12e) and (15b) are
compatible only if one of the following conditions holds:

(17)

or

(18)

where the th harmonic components and are as-
sumed to be the solution of (12a)–(12e) under the boundary con-
ditions (15a) and (15c)–(15e).

In general, the propagation factordetermined from (16)
hardly meets the condition given by (17). Therefore, (18) must
be imposed as the compatibility condition. This implies that
the high-order harmonics due to the semiconductor nonlinearity
are confined in the semiconductor and do not penetrate into the
insulator.

If (17) happens to be satisfied, the solution would not be
unique since any arbitrary could result in a solution, which
is a phenomenal characteristic of shock waves or resonance. The
reason for the resonance occurrence is because under (17), the

th harmonic is satisfying the identical set of equations as the
fundamental mode at frequency . Physically, the
local th harmonic contributions due to the semiconductor non-
linearity are able to propagate as fundamental mode waves along
the waveguide and, thus, be summed in phase along their prop-
agation paths to give rise to resonance.

Under the compatibility condition (18), (12a)–(12e) along
with the boundary conditions (15a) and (15c)–(15e) completely
determine the th harmonic field components and carrier con-
centrations (where ).

C. Some Considerations on Finite-Element Analysis

The frequency-domain formula developed in Section III-A
and B can be discretized using the standard finite-element pro-
cedure [21]. Since all the equations under consideration have
derivatives up to the second order, the weak form of the finite-el-
ement analysis contains derivatives up to the first order. Hence,
the interpolation (shape) functions with continuity are suffi-
cient for the problem under study.

After substitution of and , (12b) and (12c) contain
the second-order derivatives and ,
respectively. In (12b), the ratio between the coefficients
of and is roughly of the order of ,
where is the -type Debye length.
Similarly, in (12c), the ratio between the coefficients of

and is roughly of the order of , where
is the -type Debye length.

Note that the Debye length is generally much smaller than the
dimension of the structure under consideration. Mathematically,
either (12b) or (12c) results in a boundary layer problem [22],
which implies a solution with a fast varying factor
or within a very thin layer of the order of the Debye
length. Physically, an accumulation-depletion layer of carriers
appears in the semiconductor near the interface at . In
order for modeling the fast decay behavior of carrier concentra-
tions in the accumulation-depletion layer, an adaptive meshing

scheme is employed to allocate finer elements at locations closer
to the interface in the finite-element discretization.

Theoretically, the component of electrical field should au-
tomatically fulfill the boundary condition

(19)

However, the weak solution may not satisfy (19) due to the weak
sense of the numerical solution and the error introduced by nu-
merical evaluation of the derivative term in (12d). The conse-
quences become severe because the solution in the accumula-
tion-depletion layer is quite sensitive. In order to remove the
degradation of accuracy near the interface at and enhance
the overall solution convergence, a boundary term imposing (19)
at has been added into the weak form regarding to (12d).
By so doing, the numerical solution is actually required to sat-
isfy (19) at while meeting (12d) everywhere else.

Since the equations are nonlinear in, it is essentially a non-
linear system of equations for the fundamental mode. Newton’s
method [23] can be used to solve such a nonlinear system of
equations. Unlike the iterative algorithm in [19], which solves
the equations sequentially and separately at each iteration, all
the equations are simultaneously solved using multidimensional
Newton’s method in this scheme, which reduces the number of
iterations considerably.

For high-order harmonics, the equations turn out to be linear
and, thus, can be solved by the standard matrix technique [24].
To gain fast computational speed and save memory, sparse ma-
trix schemes have been utilized for solving linear equations.
To circumvent the large disparity of the magnitude among un-
known variables, matrix balancing is also adapted. Further de-
tailed discussions on numerical aspects of this scheme including
multidimensional Newton’s method, finite-element discretiza-
tion, and matrix manipulation can be found in [26].

IV. NUMERICAL RESULTS

In this section, numerical results are presented to validate the
computer program and demonstrate capabilities of this device-
level frequency-domain (DLFD) scheme. For all the numerical
examples, unless otherwise mentioned, the following geomet-
rical and material parameters were assumed: ,

, , cm v s , cm v
s , , , K,

s, s, m, and
m, where and are, respectively, the permittivity and

permeability in vacuum, and is the Boltzmann constant. The
semiconductor was assumed to be-type silicon with donor im-
purity concentration cm . The metal work function
was chosen in such a way that a flat-band condition would be
attained in the absence of external bias. Under the assumption of
small disturbance from equilibrium, the net recombination rates
can be approximately expressed as by virtue of
the Shockley–Read–Hall recombination model. The hole life-
time was taken to be 2.5 10 s in the calculation. Various
excitations with ranging from 10 v/cm to 10 v/cm have
been applied in the simulation.

In order to tackle the boundary layer nature, the mesh grid
takes a much smaller size at a location closer to the interface
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(a) (b)

(c) (d)

Fig. 2. Magnitude of the fundamental mode in the semiconductor. (a) Electric-field componentE . (b) Electric-field componentE . (c) Electron concentration
n . (d) Hole concentrationp .

at . In specific, for the numerical example below, the
mesh size starts as small as 10 m at , and gradually
increases to 5 m at m. By so doing, the mesh grid
is fine enough to capture the boundary layer behavior in the
accumulation-depletion layer, whereas keeps the entire problem
manageable by easily accessible computing resources such as
personal computers. The utilization of sparse matrix techniques
results in an algorithm of complexity , where denotes
the total number of unknowns.

Figs. 2 and 3 illustrate the magnitude distributions of field
components and carrier concentrations for the fundamental
mode, the second-order harmonic, and the third-order har-
monic along the vertical direction at a fundamental frequency

GHz, when an excitation with v/cm was
applied. The cases with three different external bias conditions,
i.e., negative bias 0.1 v, no bias, and positive bias0.1 v, were
examined. For these respective external bias conditions, the
propagation factor was obtained as ,

, and . The
real part of propagation factor gives the attenuation constant,
whereas its imaginary part corresponds to the phase constant.
The above values of propagation factor result in the normalized

phase constant and and
the attenuation constant and dB/mm,
respectively, where denotes the wavenumber in vacuum. The
large ratio between the phase constant and vacuum wavenumber
indicates that the MIS waveguide structure exhibits a slow-wave
phenomenon. Moreover, the attenuation constant provides a
direct account for the semiconductor substrate loss.

Some phenomena reported in the small-signal analysis of [19]
can be observed in the solution of the fundamental mode, as
shown in Fig. 2. In most previous work on studying MIS struc-
tures (e.g., see [6]–[17]), semiconductor substrates were de-
scribed by a uniform conductivity model in which the semicon-
ductor is treated as a uniform lossy material and the electrical
property of the semiconductor is characterized by its conduc-
tivity and dielectric constant. Using such a uniform conductivity
model [3], [25], the propagation factor can be readily obtained
as a complex value , which provides
a close approximation to the actual result attained using the de-
vice-level simulation. Nevertheless, the device-level simulation
is able to offer detailed insight regarding field–carrier interac-
tion mechanisms, as well as external bias effects, whereas the
uniform conductivity model fails to do so. The device-level sim-
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(a) (b)

(c) (d)

Fig. 3. Magnitude of high-order harmonics in the semiconductor. (a) Electric-field componentE of the second harmonic. (b) Electron concentrationn of
the second harmonic. (c) Electric-field componentE of the third harmonic. (d) Electron concentrationn of the third harmonic.

ulation shows a strong coupling effect between the transverse
component of electrical field and charged carriers, which
leads to a completely different solution in the accumulation-de-
pletion layer from that predicted by the uniform conductivity
model. As indicated in the plots, the screening effect of the car-
riers near the accumulation-depletion layer prevents the elec-
trical field from penetrating the semiconductor to beyond a few
Debye lengths.

Furthermore, this device-level simulation is capable of inves-
tigating the nonlinearity effect and predicting harmonics quan-
titatively, as shown in Fig. 3. It is of interest to note that some
sidelobes appear in the amplitude plots of majority carrier con-
centrations for high-order harmonics. The second harmonic is
generated by field–carrier interactions among the fundamental
mode, whereas the third harmonic is due to field–carrier inter-
actions between the fundamental mode and second harmonic.
Therefore, intuitively, the second harmonic is expected to act
in more complex way than the fundamental mode. Moreover,
the third harmonic might exhibit even wilder behavior than the
second harmonic. The intuition agrees well with the simulation
results, as shown by Fig. 3, where more sidelobes are observed
for a higher order harmonic. Moreover, the location where the

electric field reaches its maximum coincides with the zero-
crossing point of the majority carrier concentration . A sim-
ilar phenomenon to the third harmonic can be also observed
between the electric field and the majority carrier con-
centration . The zero-crossing points correspond to the re-
gions where the majority carrier concentrations undertake rapid
changes, which could induce strong electric fields locally.

The simulations were also performed for several other excita-
tions with ranging from 10 v/cm to 10 v/cm. For each
of these excitations, plots identical to Figs. 2 and 3 can be ob-
tained, except that appropriate scaling factors need to be used.
In Figs. 2 and 3, the scaling factors are shown in the brackets
along with the units at the vertical axis labels, i.e., the scaling
factors are 10, 10 , 10 , 10, 10 , 10 , 10 , and 10 for
unknowns , , , , , , , and , re-
spectively. These scaling factors are an excellent measure for
the order of magnitude of unknowns. Fig. 4 depicts the scaling
factors versus the excitation magnitude for the interested
unknown variables.

It can be both theoretically proven and numerically observed
that the fundamental mode is linearly proportional to the excita-
tion magnitude . Using the fact, the fundamental mode for
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(a)

(b)

Fig. 4. Scaling factors (orders of magnitudes) of the fundamental mode,
second harmonic, and third harmonic. (a)x components of electric field.
(b) Electron concentrations.

the excitation with v/cm can be readily obtained
by scaling plots in Fig. 2 with a factor 10, which gives results
in a close agreement with those from the small-signal analysis,
i.e., [19, Figs. 6–9]. Some slight discrepancies exhibited by the
minority carrier concentration might be caused by a dif-
ferent recombination formula used in the calculation from that
in [19]. Two distinct net recombination rates were employed in
[19] for electrons and holes, respectively, which might lead to
a violation of the basic charge conservation principle. In this
study, a single net recombination rate formula is applied to ac-
count for contributions from both electrons and holes, which
eliminates this violation. The propagation factoris usually a
function of geometrical and material parameters and external
bias, but independent of the excitation strength. Hence, the prop-
agation factors are the same for all the excitations.

Moreover, Fig. 4 reveals that the second and third harmonics
are, respectively, proportional to and . In gen-
eral, it can be expected that theth harmonic is proportional
to . When the excitation becomes larger, the magnitudes

(a)

(b)

Fig. 5. Propagation characteristics versus the impurity concentration.
(a) Normalized wavelength. (b) Attenuation constant.

of high-order harmonics get closer and more comparable to the
magnitude of the fundamental mode and, thus, the nonlinearity
becomes more severe. As shown in Fig. 4, the ratio between
the magnitudes of a high-order harmonic and the fundamental
mode is becoming unity when is approaching 10v/cm and
equivalently the maximum magnitude of is approaching
3.27 10 v/cm. Note that the breakdown field strength for sil-
icon is about 3 10 v/cm. Therefore, a nearly unitary ratio
between the magnitudes of the high-order harmonics and the
fundamental mode is a clear indication of semiconductor break-
down. Mathematically, it implies that the solution can no longer
be expressed by a series of harmonics because the series (6b)
divergences and, thus, is invalid.

For an excitation with v/cm, the high-order har-
monics are very small fractions of the fundamental mode in
magnitude, which are about or below 0.1% of the fundamental
model. In this case, the MIS waveguide structure can be ap-
proximated as a linear-circuit element. However, for an exci-
tation with v/cm, the second harmonic is now about
one-tenth of the fundamental mode in magnitude, which can no
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longer be neglected. In the later case, the MIS waveguide struc-
ture should be treated as a nonlinear circuit element. Given that
the insulator thickness is 0.05m, the equivalent ac voltage to

v/cm is roughly 0.5 V. Roughly speaking, most of
the voltage drop is applied across the insulator layer and, thus,
the magnitude of electric field is linearly proportional to the in-
sulator thickness for a given voltage. A thicker insulator layer is
able to reduce the electric field in the semiconductor substrate
and, thus, suffers less severe nonlinearity. For instance, if the
insulator thickness is increased to be 0.5m, the second har-
monic is then only approximately 1% of the fundamental mode
in magnitude, although the ac voltage is still 0.5 V.

The signal propagation along an MIS interconnect depends
strongly on the conductivity of the semiconductor substrate. De-
pending on its doping rate, the substrate conductivity can vary
over a wide range, e.g., more than four decades from 1 S/m to
10 S/m when silicon is used as the substrate material. Fig. 5
depicts the phase and attenuation constants versus the impurity
concentration for an MIS interconnect. In this calculation, the
geometrical parameters are given as m and

m, whereas all the physical parameters are assumed to
be the same as those used in previous examples, except for
the donor impurity concentration that varies over a range from

cm to cm . The operating fre-
quency is assumed to be 1 GHz, and no external bias is applied
to this MIS structure. The results obtained using the uniform
conductivity model [3], [25] are also shown in the plots for a
purpose of comparison. As was expected, under zero bias, these
two sets of solutions are in a close agreement. It is of interest
to note that the attenuation oscillates as the substrate conduc-
tivity monotonically increases. When the substrate conductivity
gets sufficient large, the slow-wave effect diminishes, which in-
dicates that the skin effect becomes dominant for a good con-
ducting substrate.

V. CONCLUSION

A device-level simulation has been presented for studying
wave propagation along MIS interconnects. This simulation is
based on a set of nonlinear equations consisting of the motion
equations of charged carriers and Maxwell’s equations for elec-
tromagnetic fields. The set of nonlinear equations is then trans-
formed into the frequency domain and solved for a solution in
terms of a fundamental mode and high-order harmonics. Finite-
element analysis and the Newton’s method are employed to dis-
cretize and solve the frequency-domain equations numerically.
This device-level simulation provides quantitative predictions
to propagation and attenuation constants, as well as detailed
field and carrier distributions of the fundamental mode and high-
order harmonics. This proposed device-level simulation scheme
allows for large-signal analysis to be performed and is capable
of studying detailed field–carrier interaction mechanisms, semi-
conductor substrate loss and nonlinearity, slow-wave effect, and
external bias effect. It has been shown that the high-order har-
monics due to the semiconductor nonlinearity are confined in
the semiconductor and do not penetrate into the insulator in MIS
waveguide structures.
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